Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
1.
J Cell Physiol ; 239(2): e31172, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38214117

RESUMO

Periodontitis is associated with significant alveolar bone loss. Patients with iron overload suffer more frequently from periodontitis, however, the underlying mechanisms remain largely elusive. Here, we investigated the role of transferrin receptor 2 (Tfr2), one of the main regulators of iron homeostasis, in the pathogenesis of periodontitis and the dental phenotype under basal conditions in mice. As Tfr2 suppresses osteoclastogenesis, we hypothesized that deficiency of Tfr2 may exacerbate periodontitis-induced bone loss. Mice lacking Tfr2 (Tfr2-/- ) and wild-type (Tfr2+/+ ) littermates were challenged with experimental periodontitis. Mandibles and maxillae were collected for microcomputed tomography and histology analyses. Osteoclast cultures from Tfr2+/+ and Tfr2-/- mice were established and analyzed for differentiation efficiency, by performing messenger RNA expression and protein signaling pathways. After 8 days, Tfr2-deficient mice revealed a more severe course of periodontitis paralleled by higher immune cell infiltration and a higher histological inflammation index than Tfr2+/+ mice. Moreover, Tfr2-deficient mice lost more alveolar bone compared to Tfr2+/+ littermates, an effect that was only partially iron-dependent. Histological analysis revealed a higher number of osteoclasts in the alveolar bone of Tfr2-deficient mice. In line, Tfr2-deficient osteoclastic differentiation ex vivo was faster and more efficient as reflected by a higher number of osteoclasts, a higher expression of osteoclast markers, and an increased resorptive activity. Mechanistically, Tfr2-deficient osteoclasts showed a higher p38-MAPK signaling and inhibition of p38-MAPK signaling in Tfr2-deficient cells reverted osteoclast formation to Tfr2+/+ levels. Taken together, our data indicate that Tfr2 modulates the inflammatory response in periodontitis thereby mitigating effects on alveolar bone loss.


Assuntos
Perda do Osso Alveolar , Periodontite , Animais , Humanos , Camundongos , Perda do Osso Alveolar/genética , Perda do Osso Alveolar/metabolismo , Ferro , Osteoclastos , Periodontite/genética , Periodontite/metabolismo , Receptores da Transferrina/genética , Microtomografia por Raio-X , Camundongos Endogâmicos C57BL , Células Cultivadas
2.
J Dent Res ; 102(12): 1366-1375, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37697911

RESUMO

Periodontitis is one of the most prevalent human inflammatory diseases. It is characterized by periodontal tissue destruction, progressively driven by the host response. In this regard, cytokines associated with tissue destruction, such as interleukin (IL)-6 and IL-23, use a common signaling pathway mediated by STAT3. This transcription factor is also needed for IL-17A production, a key mediator in periodontitis pathogenesis. Although several studies have reported increased activation of STAT3 in experimental periodontitis, a detailed characterization of STAT3 activation in human gingival tissues and its involvement in alveolar bone loss has yet to be explored. Using a cross-sectional study design, we detected increased proportions of pSTAT3-positive cells during periodontitis compared with health, particularly in epithelial cells and T cells. Other cell types of hematopoietic and nonhematopoietic origin also display STAT3 activation in gingival tissues. We detected increased STAT3 phosphorylation and expression of STAT3-related genes during experimental periodontitis. Next, we evaluated the role of STAT3 in alveolar bone destruction using a mouse model of STAT3 loss of function (mut-Stat3 mice). Compared with controls, mut-Stat3 mice had reduced alveolar bone loss following ligature-induced periodontitis. We also evaluated pharmacologic inhibition of STAT3 in ligature-induced periodontitis. Like mut-Stat3 mice, mice treated with STAT3 small-molecule inhibitor had reduced bone loss compared with controls. Our results demonstrate that STAT3 activation is increased in epithelial and T cells during periodontitis and indicate a pathogenic role of STAT3 in inflammatory alveolar bone loss.


Assuntos
Perda do Osso Alveolar , Periodontite , Humanos , Perda do Osso Alveolar/genética , Estudos Transversais , Periodontite/complicações , Citocinas/metabolismo , Interleucina-6/metabolismo , Fator de Transcrição STAT3/metabolismo
3.
J Periodontol ; 94(10): 1166-1175, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37006132

RESUMO

BACKGROUND: In periodontitis, the equilibrium between bone formation and resorption skews in favor of bone loss. Periodontal ligament-associated protein-1 (PLAP-1) and sclerostin play a significant role in the suppression of bone formation. Tumor necrosis factor-alpha (TNF-α) is a central proinflammatory cytokine related to periodontal bone loss. This study aims to assess gingival crevicular fluid (GCF) PLAP-1, sclerostin, and TNF-α levels in individuals with periodontal disease. METHODS: Seventy-one individuals diagnosed with generalized stage III grade C periodontitis (n = 23), gingivitis (n = 24), and periodontal health (n = 24) were included in the study. Full-mouth clinical periodontal measurements were performed. PLAP-1, sclerostin, and TNF-α total amounts in GCF were quantified by ELISA. Nonparametric methods were used for the data analyses. RESULTS: Periodontitis group exhibited significantly higher GCF PLAP-1, sclerostin and TNF-α levels compared with gingivitis and periodontally healthy groups (p < 0.05). GCF PLAP-1 and TNF-α levels of gingivitis group were higher than healthy controls (p < 0.05) whereas GCF sclerostin levels were similar in two groups (p > 0.05). Significant positive correlations were found between GCF PLAP-1, sclerostin and TNF-α levels and all clinical parameters (p < 0.01). CONCLUSIONS: To our knowledge, this is the first study showing GCF PLAP-1 levels in periodontal health and disease. Increased GCF PLAP-1 and sclerostin levels and their correlations with TNF-α in periodontitis imply that those molecules might be involved in the pathogenesis of periodontal disease. Further studies in larger mixed cohorts are needed to enlighten the possible role of PLAP-1 and sclerostin in periodontal bone loss.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Perda do Osso Alveolar , Periodontite Crônica , Proteínas da Matriz Extracelular , Líquido do Sulco Gengival , Fator de Necrose Tumoral alfa , Humanos , Proteínas Adaptadoras de Transdução de Sinal/análise , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Perda do Osso Alveolar/etiologia , Perda do Osso Alveolar/genética , Perda do Osso Alveolar/metabolismo , Periodontite Crônica/complicações , Periodontite Crônica/genética , Periodontite Crônica/metabolismo , Proteínas da Matriz Extracelular/análise , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Líquido do Sulco Gengival/química , Gengivite/complicações , Gengivite/genética , Gengivite/metabolismo , Fator de Necrose Tumoral alfa/análise , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
4.
Inflamm Res ; 72(4): 859-873, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36912916

RESUMO

INTRODUCTION: The role of suppressor of cytokine signaling 2 (SOCS2) in Aggregatibacter actinomycetemcomitans (Aa)-induced alveolar bone loss is unknown; thus, it was investigated in this study. METHODS: Alveolar bone loss was induced by infecting C57BL/6 wild-type (WT) and Socs2-knockout (Socs2-/-) mice with Aa. Bone parameters, bone loss, bone cell counts, the expression of bone remodeling markers, and cytokine profile were evaluated by microtomography, histology, qPCR, and/or ELISA. Bone marrow cells (BMC) from WT and Socs2-/- mice were differentiated in osteoblasts or osteoclasts for analysis of the expression of specific markers. RESULTS: Socs2-/- mice intrinsically exhibited irregular phenotypes in the maxillary bone and an increased number of osteoclasts. Upon Aa infection, SOCS2 deficiency resulted in the increased alveolar bone loss, despite decreased proinflammatory cytokine production, in comparison to the WT mice. In vitro, SOCS2 deficiency resulted in the increased osteoclasts formation, decreased expression of bone remodeling markers, and proinflammatory cytokines after Aa-LPS stimulus. CONCLUSIONS: Collectively, data suggest that SOCS2 is a regulator of Aa-induced alveolar bone loss by controlling the differentiation and activity of bone cells, and proinflammatory cytokines availability in the periodontal microenvironment and an important target for new therapeutic strategies. Thus, it can be helpful in preventing alveolar bone loss in periodontal inflammatory conditions.


Assuntos
Perda do Osso Alveolar , Doenças Periodontais , Camundongos , Animais , Perda do Osso Alveolar/genética , Aggregatibacter actinomycetemcomitans/metabolismo , Camundongos Endogâmicos C57BL , Doenças Periodontais/metabolismo , Osteoclastos/metabolismo , Citocinas/metabolismo , Proteínas Supressoras da Sinalização de Citocina/genética , Proteínas Supressoras da Sinalização de Citocina/metabolismo
5.
J Cell Physiol ; 238(5): 1036-1045, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36922748

RESUMO

Periodontitis is a chronic immune inflammatory disease that can lead to the destruction and loss of the tooth-supporting apparatus. During this process, the balance between bone absorption mediated by osteoclasts and bone formation mediated by osteoblasts is damaged. Consistent with previous studies, we observed that depletion of cylindromatosis (CYLD) resulted in an osteoporotic bone phenotype. However, the effect of CYLD deficiency on periodontitis is undetermined. Here, we investigated whether CYLD affects periodontal tissue homeostasis in experimental periodontitis in Cyld knockout (KO) mice, and we explored the underlying mechanisms. Interestingly, we discovered significant alveolar bone density loss and severely reduced alveolar bone height in Cyld KO mice with experimentally induced periodontitis. We observed increased osteoclast number and activity in both the femurs and alveolar bones, accompanied by the downregulation of osteogenesis genes and upregulation of osteoclastogenesis genes of alveolar bones in ligatured Cyld KO mice. Taken together, our findings demonstrate that the deletion of CYLD in mice plays a vital role in the pathogenesis of periodontal bone loss and suggest that CYLD might exert an ameliorative effect on periodontal inflammatory responses.


Assuntos
Perda do Osso Alveolar , Periodontite , Camundongos , Animais , Perda do Osso Alveolar/genética , Osteogênese , Osteoclastos/patologia , Periodontite/genética , Periodontite/patologia , Osso e Ossos/patologia , Enzima Desubiquitinante CYLD/genética
6.
Int J Mol Sci ; 24(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36768651

RESUMO

Porphyromonas gingivalis is one of the major bacteria constituting the subgingival pathogenic polymicrobial milieu during periodontitis. Our objective is to determine the global microRNA (miRNA, miR) expression kinetics in 8- and 16-weeks duration of P. gingivalis infection in C57BL/6J mice and to identify the miRNA signatures at specific time-points in mice. We evaluated differential expression (DE) miRNAs in mandibles (n = 10) using high-throughput NanoString nCounter® miRNA expression panels. The bacterial colonization, alveolar bone resorption (ABR), serum immunoglobulin G (IgG) antibodies, and bacterial dissemination were confirmed. In addition, all the infected mice showed bacterial colonization on the gingival surface, significant increases in ABR (p < 0.0001), and specific IgG antibody responses (p < 0.05-0.001). The miRNA profiling showed 26 upregulated miRNAs (e.g., miR-804, miR-690) and 14 downregulated miRNAs (e.g., miR-1902, miR-1937a) during an 8-weeks infection, whereas 7 upregulated miRNAs (e.g., miR-145, miR-195) and one downregulated miR-302b were identified during a 16-weeks infection. Both miR-103 and miR-30d were commonly upregulated at both time-points, and all the DE miRNAs were unique to the specific time-points. However, miR-31, miR-125b, miR-15a, and miR-195 observed in P. gingivalis-infected mouse mandibles were also identified in the gingival tissues of periodontitis patients. None of the previously identified miRNAs reported in in vitro studies using cell lines (periodontal ligament cells, gingival epithelial cells, human leukemia monocytic cell line (THP-1), and B cells) exposed to P. gingivalis lipopolysaccharide were observed in the in vivo study. Most of the pathways (endocytosis, bacterial invasion, and FcR-mediated phagocytosis) targeted by the DE miRNAs were linked with bacterial pathogen recognition and clearance. Further, eighteen miRNAs were closely associated with the bacterial invasion of epithelial cells. This study highlights the altered expression of miRNA in gingiva, and their expression depends on the time-points of infection. This is the first in vivo study that identified specific signature miRNAs (miR-103 and miR-30d) in P. gingivalis invasion of epithelial cells, establishes a link between miRNA and development of periodontitis and helping to better understand the pathobiology of periodontitis.


Assuntos
Perda do Osso Alveolar , MicroRNAs , Periodontite , Humanos , Camundongos , Animais , Porphyromonas gingivalis , Cinética , Camundongos Endogâmicos C57BL , Periodontite/microbiologia , Gengiva , Perda do Osso Alveolar/genética , Imunoglobulina G/metabolismo
7.
Oral Dis ; 29(3): 1312-1323, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34914154

RESUMO

BACKGROUND: It has been well documented that metabolic syndrome (MetS) increases severity of periodontitis. In this study, we determined the effect of high-fat diet (HFD)-induced MetS on alveolar bone loss in a mouse model with ligature-induced periodontitis. To understand how MetS increases bone loss, we tested our hypothesis that palmitic acid (PA), a most abundant saturated fatty acid in the HFD, interacts with lipopolysaccharide (LPS) to promote osteoclastogenesis. METHODS: We induced MetS by feeding mice HFD for 18 weeks and induced periodontitis with ligature placement. After treatments, we assessed alveolar bone loss using micro-computed tomography and determined osteoclastogenesis using tartrate-resistant acid phosphatase (TRAP) staining. To explore the mechanisms, we treated macrophages with PA, LPS or both and analyzed the osteoclast formation and cytokine expression in macrophages. RESULTS: While ligature robustly induced periodontitis in mice with or without MetS, the mice with MetS had more bone loss than those without MetS. PA and LPS cooperatively induced osteoclast formation and stimulated the expression of inflammatory cytokines involved in osteoclastogenesis potentially via a FAT/CD36-dependent mechanism in macrophages. CONCLUSIONS: HFD-induced MetS increases alveolar bone loss in mice with ligature-induced periodontitis, and PA and LPS cooperatively stimulate osteoclast formation and proinflammatory gene expression in macrophages.


Assuntos
Perda do Osso Alveolar , Síndrome Metabólica , Periodontite , Animais , Camundongos , Perda do Osso Alveolar/etiologia , Perda do Osso Alveolar/genética , Citocinas , Dieta Hiperlipídica , Lipopolissacarídeos/farmacologia , Síndrome Metabólica/complicações , Osteoclastos/metabolismo , Periodontite/complicações , Microtomografia por Raio-X
8.
Inflamm Res ; 72(1): 107-114, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36333479

RESUMO

OBJECTIVE: In this study, we investigated the modulatory effects of PI3Kγ on IL-17A expression and the progression of experimental periodontitis in vivo. METHODS: Ligature-induced periodontitis was developed around the first molar of mice. Animals were treated with anti-mouse IL-17A or IPI-549 (PI3Kγ inhibitor). In addition, PI3Kγ-deficient mice (PI3Kγ-/-) were used in the study. Alveolar bone loss was measured and real-time PCR of Il17a and Rankl genes was performed. A bioinformatics analysis was carried out using the Gene Set Enrichment Analysis computational tool. RESULTS: Nine days after ligature placement, alveolar bone loss scores were significantly increased, with upregulation of Il17a and Rankl genes in the gingival tissues. Treatment with anti-mouse IL-17A (100 µg/mice) significantly attenuated alveolar bone loss. Mice with ligature-induced periodontitis treated with IPI-549 (3 mg/kg) or PI3Kγ-/- mice showed reduced alveolar bone loss and downregulation of Il17a and Rankl gene expression in the gingival tissues. Consistent with this, the bioinformatics analysis showed upregulation of IL17F, IL17A, IL17D, and STAT3 genes, as well as greater activation of IL-17 and PI3KCI pathways (upregulation of PIK3CG gene) in the gingival tissue of patients with periodontitis. CONCLUSION: PI3Kγ plays an important role in modulating IL-17A expression and alveolar bone loss in vivo and can be considered a promising pathway for the management of periodontal disease and the development of new therapies.


Assuntos
Perda do Osso Alveolar , Periodontite , Animais , Camundongos , Perda do Osso Alveolar/tratamento farmacológico , Perda do Osso Alveolar/genética , Interleucina-17/genética , Interleucina-17/metabolismo , Periodontite/tratamento farmacológico , Periodontite/genética , Gengiva/metabolismo , Ligadura , Modelos Animais de Doenças
9.
Int J Mol Sci ; 25(1)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38203644

RESUMO

Dysbiosis of oral microbiota is associated with the initiation and progression of periodontitis. The cause-and-effect relationship between genetics, periodontitis, and oral microbiome dysbiosis is poorly understood. Here, we demonstrate the power of the collaborative cross (CC) mice model to assess the effect of the genetic background on microbiome diversity shifts during periodontal infection and host suitability status. We examined the bacterial composition in plaque samples from seven different CC lines using 16s rRNA sequencing before and during periodontal infection. The susceptibility/resistance of the CC lines to alveolar bone loss was determined using the micro-CT technique. A total of 53 samples (7 lines) were collected before and after oral infection using oral swaps followed by DNA extraction and 16 s rRNA sequencing analysis. CC lines showed a significant variation in response to the co-infection (p < 0.05). Microbiome compositions were significantly different before and after infection and between resistant and susceptible lines to periodontitis (p < 0.05). Gram-positive taxa were significantly higher at the resistant lines compared to susceptible lines (p < 0.05). Gram-positive bacteria were reduced after infection, and gram-negative bacteria, specifically anaerobic groups, increased after infection. Our results demonstrate the utility of the CC mice in exploring the interrelationship between genetic background, microbiome composition, and periodontitis.


Assuntos
Perda do Osso Alveolar , Periodontite , Animais , Camundongos , Perda do Osso Alveolar/genética , Disbiose/genética , RNA Ribossômico 16S/genética , Cognição , Periodontite/genética
10.
BMC Oral Health ; 22(1): 263, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35764993

RESUMO

The immunological response occurring during periapical inflammation includes expression of nucleotide binding oligomerization domain containing 2 and hepcidin. Nucleotide binding oligomerization domain containing 2 deficiency increases infiltration of inflammatory cells close to alveolar bone. Hepcidin has an important role in iron metabolism affecting bone metabolism.We investigated the role of nucleotide binding oligomerization domain containing 2 and hepcidin in inflammatory periapical periodontitis. Periapical periodontitis was induced in rats and confirmed by micro-computed tomography. Nucleotide binding oligomerization domain 2 and hepcidin were evaluated through immunohistochemistry. Bioinformatics analysis was undertaken usingthe Kyoto Encyclopedia of Genes and Genomes and Gene Ontology databases. Micro-computer tomography revealed alveolar bone resorption in the periapical region and furcation area of mandibular molars in rats of the periapical periodontitis group. Immunohistochemistry showed increased expressionof nucleotide binding oligomerization domain containing 2 and hepcidin around root apices in rats of the periapical periodontitis group. Bioinformatics analysis of differentially expressed genes in inflamed and non-inflamed tissues revealed enrichment in the NOD-like receptor signaling pathway. Our data suggest that nucleotide binding oligomization domain contain2 and hepcidin have important roles in periapical periodontitis severity because they can reduce alveolar bone loss.They could elicit new perspectives for development of novel strategies for periapical periodontitis treatment.


Assuntos
Hepcidinas , Proteína Adaptadora de Sinalização NOD2 , Periodontite Periapical , Perda do Osso Alveolar/genética , Perda do Osso Alveolar/metabolismo , Perda do Osso Alveolar/patologia , Animais , Hepcidinas/genética , Hepcidinas/metabolismo , Proteína Adaptadora de Sinalização NOD2/genética , Proteína Adaptadora de Sinalização NOD2/metabolismo , Nucleotídeos/metabolismo , Periodontite Periapical/genética , Periodontite Periapical/metabolismo , Periodontite Periapical/patologia , Ratos , Microtomografia por Raio-X
11.
J Periodontal Res ; 57(4): 811-823, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35653494

RESUMO

OBJECTIVE: To explore the role of Marginal Zone B and B-1 Cell-Specific Protein (MZB1), a novel molecule associated with periodontitis, in migration of human periodontal ligament cells (hPDLCs) and alveolar bone orchestration. BACKGROUND: MZB1 is an ER-localized protein and its upregulation has been found to be associated with a variety of human diseases. However, few studies have investigated the effect and mechanism of MZB1 on hPDLCs in periodontitis. METHODS: Gene expression profiles in human gingival tissues were acquired from the Gene Expression Omnibus (GEO) database, and candidate molecules were then selected through bioinformatic analysis. Subsequently, we identified the localization and expression of MZB1 in human gingival tissues, mice, and hPDLCs by immunofluorescence, RT-qPCR, and Western blot. Dual-luciferase reporter assay was applied to assess the binding of miR-185-5p to MZB1. Furthermore, the effects of MZB1 on cell migration, proliferation, and apoptosis in vitro were investigated by wound-healing assay, transwell assay, CCK-8 assay, and flow cytometry analysis. Finally, Micro-CT analysis and H&E staining were performed to examine the effects of MZB1 on alveolar bone loss in vivo. RESULTS: Bioinformatic analysis discovered that MZB1 was one of the most significantly increased genes in periodontitis patients. MZB1 was markedly increased in the gingival tissues of periodontitis patients, in the mouse models, and in the hPDLCs treated with lipopolysaccharide of Porphyromonas gingivalis (LPS-PG). Furthermore, in vitro experiments showed that MZB1, as a target gene of miR-185-5p, inhibited migration of hPDLCs. Overexpression of MZB1 specifically upregulated the phosphorylation of p65, while pretreatment of MZB1-overexpressed hPDLCs with PDTC (NF-κB inhibitor) notably reduced the p-p65 level and promoted cell migration. In addition, the mRNA expression levels of alkaline phosphatase (ALP) and Runt-related transcription factor 2 (Runx2) were inhibited in MZB1-overexpressed hPDLCs and miR-185-5p inhibitor treated hPDLCs, respectively. In vivo experiments showed that knockdown of MZB1 alleviated the loss of alveolar bone. CONCLUSION: As a target gene of miR-185-5p, MZB1 plays a crucial role in inhibiting the migration of hPDLCs through NF-κB signaling pathway and deteriorating alveolar bone loss.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Perda do Osso Alveolar , MicroRNAs , Periodontite , Proteínas Adaptadoras de Transdução de Sinal/genética , Perda do Osso Alveolar/genética , Perda do Osso Alveolar/metabolismo , Animais , Células Cultivadas , Humanos , Camundongos , MicroRNAs/genética , NF-kappa B/metabolismo , Osteogênese , Ligamento Periodontal/metabolismo , Periodontite/genética , Periodontite/metabolismo , Transdução de Sinais/genética
12.
J Biol Chem ; 298(6): 102036, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35588785

RESUMO

Serum- and glucocorticoid-regulated kinase 1 (SGK1) is a serine/threonine kinase that plays important roles in the cellular stress response. While SGK1 has been reported to restrain inflammatory immune responses, the molecular mechanisms involved remain elusive, especially in oral bacteria-induced inflammatory milieu. Here, we found that SGK1 curtails Porphyromonas gingivalis-induced inflammatory responses through maintaining levels of tumor necrosis factor receptor-associated factor (TRAF) 3, thereby suppressing NF-κB signaling. Specifically, SGK1 inhibition significantly enhances production of proinflammatory cytokines, including tumor necrosis factor α, interleukin (IL)-6, IL-1ß, and IL-8 in P. gingivalis-stimulated innate immune cells. The results were confirmed with siRNA and LysM-Cre-mediated SGK1 KO mice. Moreover, SGK1 deletion robustly increased NF-κB activity and c-Jun expression but failed to alter the activation of mitogen-activated protein kinase signaling pathways. Further mechanistic data revealed that SGK1 deletion elevates TRAF2 phosphorylation, leading to TRAF3 degradation in a proteasome-dependent manner. Importantly, siRNA-mediated traf3 silencing or c-Jun overexpression mimics the effect of SGK1 inhibition on P. gingivalis-induced inflammatory cytokines and NF-κB activation. In addition, using a P. gingivalis infection-induced periodontal bone loss model, we found that SGK1 inhibition modulates TRAF3 and c-Jun expression, aggravates inflammatory responses in gingival tissues, and exacerbates alveolar bone loss. Altogether, we demonstrated for the first time that SGK1 acts as a rheostat to limit P. gingivalis-induced inflammatory immune responses and mapped out a novel SGK1-TRAF2/3-c-Jun-NF-κB signaling axis. These findings provide novel insights into the anti-inflammatory molecular mechanisms of SGK1 and suggest novel interventional targets to inflammatory diseases relevant beyond the oral cavity.


Assuntos
Perda do Osso Alveolar , Proteínas Imediatamente Precoces , Proteínas Serina-Treonina Quinases , Fator 3 Associado a Receptor de TNF , Perda do Osso Alveolar/genética , Animais , Citocinas/metabolismo , Genes jun , Proteínas Imediatamente Precoces/metabolismo , Imunidade , Inflamação , Camundongos , NF-kappa B/genética , NF-kappa B/metabolismo , Porphyromonas gingivalis/patogenicidade , Proteínas Serina-Treonina Quinases/metabolismo , RNA Interferente Pequeno , Transdução de Sinais , Fator 2 Associado a Receptor de TNF/metabolismo , Fator 3 Associado a Receptor de TNF/metabolismo
13.
J Periodontol ; 93(9): 1366-1377, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35404474

RESUMO

BACKGROUND: Periodontal destruction can be the result of different known and yet-to-be-discovered biological pathways. Recent human genetic association studies have implicated interferon-gamma inducible protein 16 (IFI16) and absent in melanoma 2 (AIM2) with high periodontal interleukin (IL)-1ß levels and more destructive disease, but mechanistic evidence is lacking. Here, we sought to experimentally validate these observational associations and better understand IFI16 and AIM2's roles in periodontitis. METHODS: Periodontitis was induced in Ifi204-/- (IFI16 murine homolog) and Aim2-/- mice using the ligature model. Chimeric mice were created to identify the main source cells of Ifi204 in the periodontium. IFI16-silenced human endothelial cells were treated with periodontal pathogens in vitro. Periodontal tissues from Ifi204-/- mice were evaluated for alveolar bone (micro-CT), cell inflammatory infiltration (MPO+ staining), Il1b (qRT-PCR), and osteoclast numbers (cathepsin K+ staining). RESULTS: Ifi204-deficient mice> exhibited >20% higher alveolar bone loss than wild-type (WT) (P < 0.05), while no significant difference was found in Aim2-/- mice. Ifi204's effect on bone loss was primarily mediated by a nonbone marrow source and was independent of Aim2. Ifi204-deficient mice had greater neutrophil/macrophage trafficking into gingival tissues regardless of periodontitis development compared to WT. In human endothelial cells, IFI16 decreased the chemokine response to periodontal pathogens. In murine periodontitis, Ifi204 depletion elevated gingival Il1b and increased osteoclast numbers at diseased sites (P < 0.05). CONCLUSIONS: These findings support IFI16's role as a novel regulator of inflammatory cell trafficking to the periodontium that protects against bone loss and offers potential targets for the development of new periodontal disease biomarkers and therapeutics.


Assuntos
Perda do Osso Alveolar , Proteínas Nucleares , Periodontite , Fosfoproteínas , Perda do Osso Alveolar/genética , Perda do Osso Alveolar/metabolismo , Perda do Osso Alveolar/prevenção & controle , Animais , Biomarcadores/metabolismo , Catepsina K , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Interferon gama/metabolismo , Interferons/metabolismo , Camundongos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Periodontite/genética , Periodontite/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo
14.
J Periodontal Res ; 57(1): 142-151, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34783015

RESUMO

OBJECTIVE: The objective of this cross-sectional study is to investigate alveolar bone gene expression in health and diabetes through ribonucleic acid (RNA) sequencing and bioinformatics analysis. BACKGROUND: It is relatively unknown how type 2 diabetes modulates gene expression in alveolar bone in humans. Clinical concern regarding increased implant failure rate in patients with diabetes has been discussed in the literature. Previous studies in animal models and humans have suggested an imbalance between the genes regulating bone formation with data suggesting bone resorption in diabetes. However, there is lack of data regarding a comprehensive gene expression from human alveolar bone in diabetes. METHODS: Alveolar bone was collected from healthy and type 2 diabetic subjects undergoing periodontal and implant surgeries. The homogenized RNA sample was then extracted and analyzed for quantity and quality. RNA samples were further purified using ribosomal RNA depletion technique and processed for RNA sequencing and analysis. Expression levels for mRNAs were performed by calculating FPKM ([total_exon_fragments/mapped reads (millions) × exon length (kB)]), and differentially expressed mRNAs were selected with log2 (fold change) >1 or log2 (fold change) ≤1 and with a parametric F test comparing nested linear models. RESULTS: Eighteen bone samples (10 healthy, 8 patients with diabetes) were analyzed for gene expression. The mean age and HbA1c% of healthy versus diabetic subjects were as follows: age (55.3 ± 17.5 vs 63.9 ± 8.7 years) and HbA1c% (5.6 ± 0.29 vs 7.3 ± 2.4), respectively. Sequencing analysis showed that expression of genes that regulate bone turnover like TGFB1, LTBP4, IGF1, BMP2, BMP4, BMP6, SMAD1, RUNX2, MCSF, and THRA was significantly downregulated in diabetes samples compared with healthy controls with overall reduced expression of genes in the bone regulation pathway in patients with diabetes. Bioinformatics analysis for the altered genes highlighted several pathways related to bone homeostasis and inflammation in diabetes. Periodontitis did not affect the gene expression pattern based on diabetes status. CONCLUSIONS: Altered expression of genes due to downregulation of certain pathways that are involved in bone turnover and inflammation suggests that overall wound healing and bone homeostasis may be compromised in type 2 diabetes.


Assuntos
Perda do Osso Alveolar , Diabetes Mellitus Tipo 2 , Periodontite , Idoso , Perda do Osso Alveolar/genética , Animais , Osso e Ossos , Estudos Transversais , Diabetes Mellitus Tipo 2/genética , Expressão Gênica , Humanos , Pessoa de Meia-Idade
15.
J Periodontol ; 93(1): 146-155, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34021604

RESUMO

BACKGROUND: The immune checkpoint programmed cell death 1 (PD-1): PD-1 ligand 1 (PD-L1) pathway plays a crucial role in maintaining immune tolerance and preventing tissue damages by excessive immune responses. PD-L1 is physiologically expressed and upregulated in keratinocytes (KCs) in the oral cavity. We here investigated the contribution of PD-L1 that was overexpressed in gingival basal KCs in a ligature-induced periodontitis model. METHODS: Wild-type (WT) BALB/c and K14/PD-L1 transgenic (tg) mice, in which PD-L1 was overexpressed in basal KCs under control of the keratin 14 promoter, were used. To induce periodontitis, a 9-0 silk ligature was placed around the upper right second molar, and lipopolysaccharide from Porphyromonas gingivalis was applied on the suture. Gingival tissues were collected on day 7, after which histological analyses were performed, including by hematoxylin and eosin and tartrate-resistant acid phosphate staining (TRAP) and quantitative PCR for proinflammatory cytokines and bone metabolism-related genes. Alveolar bone loss at 7 weeks after ligature placement was assessed by micro-computed tomography analysis. RESULTS: PD-L1 was overexpressed in the basal KCs of all gingival epithelia in K14/PD-L1tg mice. Early ligature-induced periodontal inflammation, as assessed based on histological changes, elevation of proinflammatory cytokine (IL-1ß, IL-6, TNF-α) expression, periodontal ligament degeneration, and osteoclastogenesis as assessed by Rankl and Opg expression and TRAP+ cells, was markedly impaired in K14/PD-L1tg mice. Alveolar bone resorption at a late time point was also clearly minimized in K14/PD-L1tg mice. CONCLUSION: Overexpression of PD-L1 in gingival basal keratinocytes in K14/PD-L1tg mice reduces periodontal inflammation and alveolar bone resorption in a ligature-induced periodontitis model.


Assuntos
Perda do Osso Alveolar , Periodontite , Perda do Osso Alveolar/genética , Animais , Antígeno B7-H1 , Citocinas/metabolismo , Modelos Animais de Doenças , Inflamação , Queratinócitos/metabolismo , Queratinócitos/patologia , Camundongos , Periodontite/metabolismo , Receptor de Morte Celular Programada 1 , Microtomografia por Raio-X
16.
J Dent Res ; 101(2): 187-195, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34157883

RESUMO

Periodontitis is the most common chronic oral disease and is characterized by active osteoclast activity and significant alveolar bone resorption. However, the key regulatory factors of periodontal bone loss have yet to be determined, and reasonable intervention methods for periodontitis have not been developed. Currently, long noncoding RNAs (lncRNAs) have shown a remarkable ability to maintain normal cell and tissue homeostasis. Interestingly, we recently found that the lncRNA Nron is negatively correlated with alveolar bone resorption in periodontitis model. To explore the role of Nron in periodontal bone loss, osteoclastic-specific Nron knockout mice and osteoclastic-specific Nron transgenic mice were generated. Nron effectively inhibited osteoclastogenesis and alveolar bone resorption. Mechanistically, Nron was found to effectively promote the nuclear transport of NF-κb repressing factor (NKRF). In addition, NKRF in the nucleus significantly repressed the transcription of Nfatc1, which is a major NF-κb signaling molecule. Importantly, local injection of the Nron overexpression vector significantly inhibited osteoclastogenesis and alveolar bone resorption, which indicated the translational application potential of lncRNAs in the treatment of bone resorption in periodontitis.


Assuntos
Perda do Osso Alveolar , Reabsorção Óssea , Periodontite , RNA Longo não Codificante , Perda do Osso Alveolar/genética , Perda do Osso Alveolar/prevenção & controle , Animais , Reabsorção Óssea/genética , Reabsorção Óssea/prevenção & controle , Diferenciação Celular , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição NFATC/genética , Osteoclastos , Osteogênese/genética , Periodontite/genética , Ligante RANK , RNA Longo não Codificante/genética
17.
J Mol Med (Berl) ; 100(1): 77-86, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34647144

RESUMO

Necroptosis is a form of cell death that is reportedly involved in the pathogenesis of periodontitis. The role of Mlkl-involved necroptosis remains unclear. Herein, this project aimed to explore the role of MLKL-mediated necroptosis in periodontitis in vitro and in vivo. Expression of RIPK3, MLKL, and phosphorylated MLKL was observed in gingival tissues obtained from healthy subjects or patients with periodontitis. The cell viability of Porphyromonas gingivalis lipopolysaccharide (LPS-Pg)-treated cells was detected. In wild type or Mlkl deficiency mice with ligature-induced periodontitis, alveolar bone loss and osteoclast activation were assessed. mRNA levels of inflammatory cytokines in bone marrow-derived macrophages were tested by qRT-PCR. Increased expression of RIPK3, MLKL, and phosphorylated MLKL was observed in gingival tissues obtained from patients with periodontitis. Porphyromonas gingivalis lipopolysaccharide (LPS-Pg)-treated cells developed necroptosis after caspase inhibition and negatively regulated the NF-κB signaling pathway. In mice with ligature-induced periodontitis, Mlkl deficiency reduced alveolar bone loss and weakened osteoclast activation. Furthermore, genetic ablation of Mlkl in LPS-Pg-treated bone marrow-derived macrophages increased the mRNA levels of tumor necrosis factor-α, interleukin (Il)-1ß, Il-6, cyclooxygenase 2, matrix metalloproteinase 9, and receptor activator of nuclear factor kappa-B ligand. Our data indicated that MLKL-mediated necroptosis aggravates the development of periodontitis in a Mlkl-deficient mouse. This will provide a new sight for the understanding of etiology and therapies of periodontitis. KEY MESSAGES: MLKL expression was up-regulated in inflamed human gingival tissue. Mlkl deficiency affected the progression of periodontitis. Necroptosis played a major role in mice periodontitis model. Knockout of Mlkl had a significant effect on inflammatory responses.


Assuntos
Periodontite , Proteínas Quinases , Perda do Osso Alveolar/genética , Perda do Osso Alveolar/metabolismo , Animais , Citocinas/genética , Progressão da Doença , Gengiva/metabolismo , Humanos , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Necroptose , Periodontite/genética , Periodontite/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Regulação para Cima
18.
Int J Mol Sci ; 22(23)2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34884653

RESUMO

A large number of experimental studies has demonstrated that angiotensin II (Ang II) is involved in key events of the inflammatory process. This study aimed to evaluate the role of Ang II type 1 (AT1) and Ang II type 2 (AT2) receptors on periodontitis. Methods: Experimental periodontitis was induced by placing a 5.0 nylon thread ligature around the second upper left molar of AT1 mice, no-ligature or ligature (AT1-NL and AT1-L), AT2 (AT2-NL or AT2-L) and wild type (WT-NL or L). Alveolar bone loss was scanned using Micro-CT. Cytokines, peptides and enzymes were analyzed from gingival tissues by Elisa and RT-PCR. Results: The blockade of AT1 receptor resulted in bone loss, even in healthy animals. Ang II receptor blockades did not prevent linear bone loss. Ang II and Ang 1-7 levels were significantly increased in the AT2-L (p < 0.01) group compared to AT2-NL and AT1-L. The genic expression of the Mas receptor was significantly increased in WT-L and AT2-L compared to (WT-NL and AT2-NL, respectively) and in AT1-L. Conclusions: Our data suggest that the receptor AT1 appears to be important for the maintenance of bone mass. AT2 receptor molecular function in periodontitis appears to be regulated by AT1.


Assuntos
Perda do Osso Alveolar/metabolismo , Doenças Mandibulares/metabolismo , Periodontite/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 2 de Angiotensina/metabolismo , Perda do Osso Alveolar/genética , Perda do Osso Alveolar/patologia , Angiotensina II/metabolismo , Animais , Modelos Animais de Doenças , Masculino , Doenças Mandibulares/genética , Doenças Mandibulares/patologia , Camundongos , Camundongos Knockout , Periodontite/genética , Periodontite/patologia , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 2 de Angiotensina/genética
19.
Int J Mol Sci ; 22(22)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34830316

RESUMO

Dental calculus (DC) is a common deposit in periodontitis patients. We have previously shown that DC contains both microbial components and calcium phosphate crystals that induce an osteoclastogenic cytokine IL-1ß via the NLRP3 inflammasome in macrophages. In this study, we examined the effects of cytokines produced by mouse macrophages stimulated with DC on osteoclastogenesis. The culture supernatants from wild-type (WT) mouse macrophages stimulated with DC accelerated osteoclastogenesis in RANKL-primed mouse bone marrow macrophages (BMMs), but inhibited osteoclastogenesis in RANKL-primed RAW-D cells. WT, but not NLRP3-deficient, mouse macrophages stimulated with DC produced IL-1ß and IL-18 in a dose-dependent manner, indicating the NLRP3 inflammasome-dependent production of IL-1ß and IL-18. Both WT and NLRP3-deficient mouse macrophages stimulated with DC produced IL-10, indicating the NLRP3 inflammasome-independent production of IL-10. Recombinant IL-1ß accelerated osteoclastogenesis in both RANKL-primed BMMs and RAW-D cells, whereas recombinant IL-18 and IL-10 inhibited osteoclastogenesis. These results indicate that DC induces osteoclastogenic IL-1ß in an NLRP3 inflammasome-dependent manner and anti-osteogenic IL-18 and IL-10 dependently and independently of the NLRP3 inflammasome, respectively. DC may promote alveolar bone resorption via IL-1ß induction in periodontitis patients, but suppress resorption via IL-18 and IL-10 induction in some circumstances.


Assuntos
Cálculos Dentários/genética , Interleucina-10/genética , Interleucina-18/genética , Interleucina-1beta/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Osteogênese/genética , Perda do Osso Alveolar/genética , Perda do Osso Alveolar/imunologia , Perda do Osso Alveolar/patologia , Animais , Linhagem Celular , Meios de Cultivo Condicionados/farmacologia , Cálculos Dentários/imunologia , Cálculos Dentários/patologia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Inflamassomos/efeitos dos fármacos , Inflamassomos/imunologia , Inflamassomos/metabolismo , Interleucina-10/imunologia , Interleucina-10/farmacologia , Interleucina-18/imunologia , Interleucina-18/farmacologia , Interleucina-1beta/imunologia , Interleucina-1beta/farmacologia , Ativação de Macrófagos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/deficiência , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Osteoclastos/imunologia , Osteoclastos/patologia , Osteogênese/imunologia , Periodontite/genética , Periodontite/imunologia , Periodontite/patologia , Cultura Primária de Células , Ligante RANK/genética , Ligante RANK/imunologia , Transdução de Sinais
20.
Sci Rep ; 11(1): 4970, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33654143

RESUMO

Adipose tissue fibrosis with chronic inflammation is a hallmark of obesity-related metabolic disorders, and the role of proteoglycans in developing adipose tissue fibrosis is of interest. Periodontal disease is associated with obesity; however, the underlying molecular mechanisms remain unclear. Here we investigated the roles of periodontal ligament associated protein-1 (PLAP-1)/asporin, a proteoglycan preferentially and highly expressed in the periodontal ligament, in obesity-related adipose tissue dysfunction and adipocyte differentiation. It was found that PLAP-1 is also highly expressed in white adipose tissues. Plap-1 knock-out mice counteracted obesity and alveolar bone resorption induced by a high-fat diet. Plap-1 knock-down in 3T3-L1 cells resulted in less lipid accumulation, and recombinant PLAP-1 enhanced lipid accumulation in 3T3-L1 cells. In addition, it was found that primary preadipocytes isolated from Plap-1 knock-out mice showed lesser lipid accumulation than the wild-type (WT) mice. Furthermore, the stromal vascular fraction of Plap-1 knock-out mice showed different extracellular matrix gene expression patterns compared to WT. These findings demonstrate that PLAP-1 enhances adipogenesis and could be a key molecule in understanding the association between periodontal disease and obesity-related metabolic disorders.


Assuntos
Tecido Adiposo/metabolismo , Perda do Osso Alveolar , Dieta Hiperlipídica/efeitos adversos , Proteínas da Matriz Extracelular/deficiência , Doenças Metabólicas , Células 3T3-L1 , Perda do Osso Alveolar/induzido quimicamente , Perda do Osso Alveolar/genética , Perda do Osso Alveolar/metabolismo , Animais , Proteínas da Matriz Extracelular/metabolismo , Doenças Metabólicas/induzido quimicamente , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo , Camundongos , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...